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Self Organizing Maps — Kohonen Maps

* It 1s a type of Artificial Neural Network
which Is also Inspired by biological models
of neural systems fromuthe&970s.

* It follows an . unsupervised learning
approach and

* It trains its network through a competitive
learning algorithm.
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Self Organizing Maps — Kohonen Maps

 SOM has two layers,
 one is the Input layer and
* the other one is the Outptttayer.
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Competition

* Itis atype of unsupervised artificial neural network
* It uses competetive learning to update its weights.
AJN NOTES
 Competetive learning is based on three processes :
. Competetion
Il. Cooperation
lll. Adaptation
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| Competition

e |tis atype of unsupervised artificial neural network
* It uses competitive learning to update its weights.
AJN NOTES
 Competitive learning is based on three processes :
I.- Competition
Il. Cooperation
Ill.. Adaptation
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| Competition

Each neuron in a SOM is assigned a weight vector
with the same dimensionality as the input space.

In the example below, in gaghsmeuron of the
output layer we will have a vector with dimension

n.

Compute distance between each neuron (neuron
from the output layer) and the input data, and

The neuron with the lowest distance will be the

A J N n o t e s

winner of the competition.




Il Co OPERATION




Il Co OPERATION

To choose neighbors we use neighborhood kernel
function, this function depends on two factor :
time ( time incremented each new input data) and
distance between the winner neuron and the
other neuron (How faris t @ neuron from the
winner neuron).
Time t,
Time t,

Time ty
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Il Co OPERATION

w, =w, +n(t)-h, (t)'(xtn - wu)

A learning rate decay rule n(t)= nnexp[ —Tl]
1
ott)

A

2
A neighborhood kernel function h, ()= exp[ - 23;‘“) ]

s where d, is the lattice distance between w, and w,

hit)

‘ -0
A neighborhood size decay rule oft)= ooexp[ S i]
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[l ADAPTATION
® . choosen neurons will be updated but not the same update,

more the distance between neuron and the input data grow
&

less we adjust it like shown in the image below :
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Self Organizing Maps — Kohonen
Maps

How do SOM works?

Let’s say an input data of size (m, n) where m is the number of
training examples and n is the number of features in each
example.

First, it initializes the weights of/8{2¥[R C) where C is the
number of clusters.
Here it is three
input neurons

and two output
nheurons 3X2




Self Organizing Maps — Kohonen
Maps

How do SOM works?

Then iterating over the input data, for each training example, it
updates the winning vector (weight vector with the shortest
distance (e.g Euclidean distance) from training example).

Weight updation rule is given by aIN NOTES
w; = w;(old) + alpha(t) * (x* - w;(old))
where alpha is a learning rate at time t,

j denotes the winning neuron,

i denotes the ith feature of training example and k denotes the
kth training example from the input data.

After training the SOM network, trained weights are used for
clustering new examples. A new example falls in the cluster of

winning vectors. = 0ot e



Self Organizing Maps — Kohonen
Maps

.SOM is used for clustering




Self Organizing Maps — Kohonen
Maps

SOM is used mapping techniques to map
multidimensional data onto lower-dimensional data

to reduce - N
Self Organization Map (Kohonen Self-Organizing Maps)
complex Ly Do
K ncurons lattice
Problems
for easy
i nte rp retat i on %, Weights matrix <08
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Training Process

1. Initialize neural network m
weights

010 020 013

2. Randomly select an input 050 030 070

. e

3. Select the winning neuron

using Euclidean distance E 2
dym 'Z(x‘ ~wy,) =05~ 5)7 + (03 - 137 + (07 - 20)¢ m 235
I

\

4. Update neuron weights

5. Go back to 2 until done
training



Training Process

1. Initialize neural network
weights

2. Randomly select an input

3. Select the winning neuron
using Euclidean distance

4. Update neuron weights
5. Go back to 2 until done

training
A J N

010 020 013

050 030 070
——————————————

. - e

—

3
dy = 'Z(Xt » Wu)2 w J(0.5=5) 4 (0.3 = 13)? + (0.7 = 20)* m 235

|
)
2
d; = Z(x,-w“) = J(05-14) + (03 - 7)? + (0.7 - 3)? = 1522
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Training Process

1. Initialize neural network
weights

2. Randomly select an input

3. Select the winning neuron
using Euclidean distance

4. Update neuron weights

5. Go back to 2 until done
training

010 020 013

050 030 070

]
Z(x, ~w,,)' = 05~ 57 + (03~ 137 (07 - 20)F = 235

\

B

J -wy) = J(05-147 + (03-7)* + (0.7 - 3)* = 152

W

a

“
IZ ~wy)' = JO5 =27 + (03~ 127 + (07 - 0 (alE




Training Process

1. Initialize neural network m
weights

010 020 013

2. Randomly select an input ' 050 030 070 |

. -

3. Select the winning neuron
using Euclidean distance

]
dy s IZ(X‘ —wy) = JO5 -1+ 03-7) 4 (07 - 3) @
4. Update neuron weights v

5. Go back to 2 until done
training



Self Organizing Maps

Operations

ft @ @ Select random input
- Compute winner neuron
- Update neurans
Repeat for all input data
Classify input data

O 2 Neurons
0 6 Inputs




Self Organizing Maps

Operations

t ‘l Select random input
| Compute winner neuron
u
e Update neurons

Repeat for all input data
Classify input data

O 2 Neurons |

06 Inputs |




Self Organizing Maps

]
L
m
e @
O 2 Neurons
0 6 Inputs
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Operations

Select random input
Compute winnar neuron

Update neurons
Repeat for all input data

Classify input data



Self Organizing Maps

O 2 Neurons
O 6 Inputs

Operations

Select random input
Compute winner neuron

- Update neurons

Repeat for all input data

Classify input data



Self Organizing Maps

Operations
L Select random input
Computewinnar navron
Update neurons

Repeat for all input data
L Classify input data

O 2 Neurons
O 6 Inputs




Why SOM?

e Basically, SOMs are characterized as a
nonlinear, ordered,
Jnafolds onto the
elements of a regular, low-dimensional array?.
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Example 2: Triangle Input Distribution

A simple illustration of the learning process is given in the next
slide figure and we can understand the specialty of SOMs from
this representation easily. Initially, input data(blue dots) occupy a
special distribution in 2D space, and un-learned neuron(weights)
values (red dots) are randomly &18tNBlbed in a small area and
after neurons get modified and learned by inputs, it gets the
shape of the input data distribution step by step in the learning
process.
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Example 2: Triangle Input Distribution

In addition, each neuron became a representation of one small
cluster of input data space. Therefore in this demonstration, we
were able to represent 1000 data points with 100 neurons,
preserving the topology of the input data. That means we have
built a relationship between MiENYkhension data to low-
dimensional representation (map). For further calculations and
predictions, we can utilize these few neuron values to represent
the tremendous input data space which makes processes much
faster.

A J N n o t e



Example 2: Triangle Input Distribution

* After training the SOM’s neurons we get a low dimensional
representation of high dimensional input data without

disturbing the shape of the data distribution and relationship
between each input data elementioTes
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Example 1: Square Input Distribution

* input data values are square shapely random distributed over
the 2-dimensional space.

« — Inputs are given in blue dot and model’s neuron values
are given in red dots for epochally 807E850 and 300

) o ()



Self-organizing maps and other ANNSs
difference

e Self-organizing maps differ from other ANNs
as they apply unsupervised learning as
compared to error-corrgetign learning
(backpropagation with gradient descent etc),

* 'SOM use a neighbourhood function to

preserve the topological properties of the
Input space.

A J N n o t e s



KSOM solved example:Clustering

Ex- Construct SOFM to cluster following given vectors

X1=(0011), X2=(1000), X3=(0110), X4=(0001)

Number of clusters to be formed is two. Assume initial learning rate is 0.5.
Ans- Yl y)

Initialize weights and learning rate a

Learning rate a = 0.5 (Given) ikl w/.,
1
Number of input vectors are, n=4 )

Therefore number of rows for weight matrix are 4,

/ !
i=1,2,3 &4 C{/ d d)
Number of output clusters m=2
X,

n X X
i=1,234

Therefore number of column for weight matrix are 2,
j=1&2

Here X are inputs and Y are output clusters.
W are weights. Weight is strength of that connection

) L, © 3




KSOM solved example:Clustering

Let us initialize weight matrix randomly with the 5 ¢!
values in between 0 to 1. Q =4
W.
Number of rows, i=4, W Wy, s
Number of columns, j = 2
A
- /
02 09] ol A
o _[o4 o d O O
5 G
0‘6 O‘S "\l .Yz .Y3 ."4
0.8 0.3 i=1,234

A) Take first input vector X1= (x1,x2,x3,x4)=(0011)

Calculate Euclidean Distance between clusters j=1, 2 and first input vector using

- DJ — ?zl(WU - x,').z



KSOM solved example:Clustering

A) Take first input vector X1= (x1, x2, x3, x4)
=(0011)

DJ=Z?=1(WU - x;)?

Calculate distance between cluster j=1 and first input vector, D;=D;

Dy= Z?:l(u,(l = x()z

i=1,234

D; = (0.2-0)*+(0.4-0*+(0.6-1)*+(0.8-1)

D;=04
Calculate distance between cluster j=2 and first input vector, Dj=D;
Dy=EiL, (W - x)°
Here, D1<<D; D; = (0.9-0)2+(0.7-0+(0.5-1)2+(0.3-1)?

D;=2.04



KSOM solved example:Clustering

Here, D;<<D;, So winning cluster is j=1 by considering minimum value.

So update weights of only column j=1 of above weight matrix.

Equation to update the weights is

Wij (new) = w;; (old) + a [Xi- w;j (old)]

Here. ao=Learning rate=0.5 and j=1

Wii(new) = 0.2 + 0.5(0-0.2) =0.1

Wi(new) = 0.4 + 0.5(0-0.4) =0.2 0.1 09

: e 02 0.7
Wii(new) = 0.6 + 0.5(1-0.6) =0.8 So new wmght matrix is, \Vij = o—
Wii(new) = 0.8 + 0.5(1-0.8) =0.9 09 03



KSOM solved example:Clustering

B) Take second input vector X2= (x1, x2, x3, x4)

=(1000)
0.1 0.9
0.2 0.7
And new weight matrix, W;;=
0.8 0.5
09 03
Calculate distance between cluster and second input vector X,

D;= EI‘:;(WU = l(l)z
Calculate distance between cluster j=1 and second input vector, D;=D;
Calculate distance between cluster j=2 and

Di=X,(wy —x;)? second input vector, Dj=D;

D; = (0.1-12+(0.2-0)*+(0.8-0)*+(0.9-0)




KSOM solved example:Clustering

B) Take second input vector X2= (x1, x2, X3, x4)

=(1000)
0.1 0.9
. . 0.2 0.7
And new weight matrix, W;; =
0.8 0.5
0.9 0.3

Calculate distance between cluster and second input vector

D,=ZI‘=1(WU = 1'1)2
Calculate distance between cluster j=1 and second input vector, D;=D;
Calculate distance between cluster j=2 and

Di=X1,(Wy — x;)? second input vector, Dj=D;

D = (0.1-1)24(0.2-0)*+(0.8-02+(0.9-0)? Dy=JF" (W — x,)2

D;=23 D: = (0.9-1)>4(0.7-0)+(0.5-0*+(0.3-0)?



KSOM solved example:Clustering

B) Take second input vector X2= (x1, x2, x3, x4)

=(1000)
0.1 09
> . 0.2 0.7
And new weight matrix, W;; =
0.8 0.5
09 03

Calculate distance between cluster and second input vector

i=1,234

D;= z;n=1(wu b x‘)z

Calculate distance between cluster j=1 and second input vector, D;=D;
Calculate distance between cluster j=2 and

Di=X1, (W — x)? second input vector, Dj=D;
Di = (0.1-1+(0.2-0)+(0.8-0>+(0.9-0)* Da=E1 (Wi — X,)?
Di=23

D; = (0.9-1):‘(0.7-0)3"(0.5-0)3’(0.3-0):.
Here, Dy<<D; |
D> =0.84



KSOM solved example:Clustering

Here, D,<<D;, So winning cluster is j=2 by considering minimum value. Y, ) A
So update only column j=2 of above weight matrix.

Equation to update the weights is // /

/ ot 1
Wij (new) = wj; (old) + a [xi- w;; (old)] (/ / d
X, X,

Here. a=Learning rate=0.5 and j=2 Y Y
A3 AT |

t=1,234

Wia(new) = 0.9 + 0.5(1-0.9) =0.95

W22 = 0.7 + 0. .7) =0. 1 IX 1
>(new) =0 0.5(0-0.7) =0.35 So updated weight matrix is.

Wia(new) = 0.5 + 0.5(0-0.5) =0.25

Wi2(new) = 0.3 + 0.5(0-0.3) =0.15



KSOM solved example:Clustering

C) Take third input vector X3= (x1, X2, x3, x4) o _
= (0 1 1 0) o W/ <
JAN

Wi/ wy
0.1 0.95 /1 \
. o 0.2 035 A ok
And new weight matrix, W;;= / ”
0.8 025 / A/
0.9 0.15 () () C ) ¢ )
Calculate distance between cluster and Third input vector X, X, Xy X,
1=1,234
Dj=X%k (wy —x)?
Calculate dist betw luster j=1 and third i ' , Dj= . ;
alculate distance between cluster j=1 and third input vector, D;=D; Calculate distance between cluster j=2 and

third input vector. D;=D;
D =X (Wi — xp)? i o o

D; = (0.1-02+(0.2-12+(0.8-12+(0.9-0) D=X1 (W2 — x)°

D;=1.5 D; = (0.95-0)2+(0.35-1+(0.25-12+(0.15-0)?

Here. D1<<D3

D;=1.91




KSOM solved example:Clustering

C) Take third input vector X3= (x1, X2, x3, x4)

=(0110)
0.1 095
: . 0.2 035
And new weight matrix, W;; =
0.8 025
0.9 0.15

Calculate distance between cluster and Third input vector
Dj=XL (Wi — x)?

Calculate distance between cluster j=1 and third input vector, D;=D;
Dy =X (Wi — x)?

Dj = (0.1-0)2+(0.2-1)3+(0.8-1)2+(0.9-0)?

Here. D1<<D>

Calculate distance between cluster j=2 and
third input vector, D;=D>

D=3 (W2 — 1‘1)2

D; = (0.95-0)+(0.35-1)2+(0.25-1)2+(0.15-0)



KSOM solved example:Clustering

C) Take third input vector X3= (x1, x2, x3, x4)

=(0110)
0.1 095
. . ) 0.2 035
And new weight matrix, W;,; =
0.8 025
0.9 0.15
Calculate distance between cluster and Third input vector
1=1,23.4
D= Z.’L;(WU - %)%
Calculate distance between cluster j=1 and third input vector, D;=D; Calculate distance between cluster j=2 and
Dy=35" (Wi — X;)2 third input vector, D;=D;
D; = (0.1-002+(0.2-1)2+(0.8-1)2+(0.9-0) D=0, (W — x)?
D;=1.5 D; = (0.95-0)*+(0.35-1)+(0.25-1)*+(0.15-0)

Here. D1<<D»
D;=1.91



KSOM solved example:Clustering

Here, D1<<D;, So winning cluster is j=1 by considering minimum value.

So update weights of only column j=1 of above weight matrix.

Wy

Ya/w, /

Equation to update the weights is

Wij (new) = wj; (old) + a [Xi- w;; (old)] Q/ d
X X;

Here. o=Learning rate=0.5 and j=1 X, X;
i=1,234

Wii(new) = 0.1 + 0.5(0-0.1) =0.05
W>i1(new) = 0.2 + 0.5(1-0.2) =0.6 So updated weight matrix is.
W3i(new) = 0.8 + 0.5(1-0.8) =0.9 [0.05 0.95]

_ | 0.6 0.35
Wai(new) = 0.9 + 0.5(0-0.9) =0.45 W™ | oo was

[ 0.45 0.15




KSOM solved example:Clustering

D) Take fourth input vector X4= (x1, x2, x3, x4)
=(0001)

A

0.05 O.

_ _ 0.6 0.

And new weight matrix, Wj;=
0.9 0.
0.

0.45

- N W O
A h

5

Calculate distance between cluster and fourth input vector
D= Z?:l(wt[ - x7)?

Calculate distance between cluster j=1 and fourth input vector, D;=D;

Here, D1 <<D>

Di=XR,(wy — %)% =1475

Calculate distance between cluster j=2 and fourth input vector, D;=D;
So winning cluster is j=1 by considering minimum value.

Dy=X (Wi — x)? =181

‘ So update only column j=1 of above weight matrix.,




KSOM solved example:Clustering

Here, D1<<D;, So winning cluster is j=1 by considering minimum value.
So update weights of only column j=1 of above weight matrix.
Equation to update the weights is

Wijj (new) = wj; (old) + a [xi- w;; (old)]

Here, o=Learning rate=0.5 and j=1

Wii(new) =

So updated weight matrix is.
Wai(new) = P gh ‘

Wii(new) =

Wii(new) =




KSOM solved example:Clustering

Here, D1<<D;, So winning cluster is j=1 by considering minimum value.
So update weights of only column j=1 of above weight matrix.
Equation to update the weights is

Wijj (new) = wj; (old) + a [x;- w;; (old)]

Here, o=Learning rate=0.5 and j=1

Wii(new) = 0.05 + 0.5(0-0.05) =
Woi(new) = 0.6 + 0.5(0-0.6) =¢ So updated weight matrix is,
Wii(new) = 0.9 + 0.5(0-0.9) =(

Waii(new) = 0.45 + 0.5(1-0.45) =




KSOM solved example:Clustering

Here, D1<<D;, So winning cluster is j=1 by considering minimum value.
So update weights of only column j=1 of above weight matrix.

Equation to update the weights is

Wi (new) = w;; (old) + a [X;i- w;j (old)]

Here. o=Learning rate=0.5 and j=1

i=1,234

Wii(new) = 0.05 + 0.5(0-0.05) =0.025

Wai(new) = 0.6 + 0.5(0-0.6) =0.3 So updated weight matrix is,

25 .95
Wii(new) = 0.9 + 0.5(0-0. 0.0 0.9
0.3 0.35
Wij=

P —— ~ o~ -

Wii(new) = 0.45 + 0.5(1-




KSOM solved example:Clustering

Here, D;<<D;, So winning cluster is j=1 by considering minimum value.
So update weights of only column j=1 of above weight matrix.
Equation to update the weights is
Wi (new) = wjj (old) + a [x;- w;; (old)]

Here. o=Learning rate=0.5 and j=1

Wii(new) = 0.05 + 0.5(0-0.05) =0.025
. sioht ——
Wai(new) = 0.6 + 0.5(0-0.6) =0.3 So updated weight matrix is.

25 0.95
Wii(new) = 0.9 + 0.5(0-0.9) =0.45 o i
0.3 0.35
W‘,j =
Wii(new) = 0.45 + 0.5(1-0.45) =0.475 0.45 0.25
0.475 0.15
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